Category Archives: Science Direction

The Quail Turn

Intelligence is not something to test – but rather to recognise ..

The Quail Turn: A Project Pivot

EXCITINGLY in late April a rare Red backed button quail (Turnix maculosus) had been sighted by the SERF bird group/Peter Storer. These birds are rarely seen and poorly studied – being agents of disguise within their preferred wet grassland environments – with a call that is a soft repeated ‘oom-oom-oom-oom’ and with the end of each note ascending in pitch. They are most often seen breaking wildly  for cover when disturbed and flying elsewhere in the grassland. They are listed as vulnerable (to extinction in NSW), although not in Qld. The itinerant ones are thought to arrive Oct/Nov and likely leave for the North late Feb/March – but this year’s wet hot season has likely kept them longer. (It is likely that the birds had in this case left end of April – pre the slashing season at SERF which is later than normal).

Rare Red-backed button quail (Turnix maculosus) sigthed in the artwork site (Image Peter Storer)

By chance I met Peter Storer in the paddock with his binoculars looking for the quail in late April using call sounds – as I was working late in the afternoon on setting up key sites. During that time at dusk, when they are noted to be active.  At that time I spotted a dead juvenile red backed button quail at the edge of the long grass – indicating breeding had happened (they build nests in shallow depressions in the grasses) .. suggesting that great care should be taken entering any of the artwork’s long grassed areas esp. during nesting season.

Deceased Red-backed button quail at the artwork site (Image Keith Armstrong)

Given that the site has been in essence maintained as a grassland by slashing for decades – and that this had attracted a rare find – this raised questions as to whether regenerating the previously burnt gulley/regeneration area with trees, or indeed premature slashing of other parts of the property, may drive them away/destroy their nests/cause them to not stop in the area in the future?

Clearly this finding presaged a project turning point of some kind that would require consultation across a number of groups and the science team. It seemed that the idea of ‘active’ and ‘passive’ areas may now need to change. And that eerie, profound, quail ‘oom-oom-oom-oom’ – it may well resonate across the future artwork ..

Flying Quail captured at SERF (Image Gavin O’Meera / ebird https://media.ebird.org/catalog?taxonCode=rebbut2&mediaType=photo)

Other sightings of the red backed button on e-Bird

FYI .. other birds know to be at the site (ref. Peter Storer) were the Brown Quail (Coturnix ypsilophora) which is quite common and likely resident, the Golden-headed Cisticola (Cisticola exilis), Tawny Grassbird (Cincloramphus timoriensis), and Sacred Kingfisher (Todiramphus sanctus).

 

Setup [6] Initial Scientific Monitoring

During April/May 2024, consistent with SERF’s other monitoring programs, and the need to track progress scientifically on this project, I decided to  initially establish 1-2 trail cameras on site – as phenocams (vegetation change cameras) –  and acoustic monitoring.

Acoustic Monitoring

I determined in consultation with Dr. David Tucker that initially 1 Solar powered BioAcoustic Recorder (Solar BAR) should be deployed near the bottom of the passive plot where it meets the active plot – to record continuous audio data for later analysis – given these devices’ detection radii is quite wide on open pasture (>100m): The choice of this hardware is consistent with the equipment used by the Australian Acoustic Observatory which Dr. David Tucker is a member of – ensuring he will be able to help identify the call sounds.

Acoustic Spectrogram of Bird Sound (Image courtesy of Frontier Labs)

SolarBAR recorder + Dr. David Tucker and Prof Paul Roe (Australian Acoustic Observatory)
Visual Monitoring
Phenocams are digital cameras (usually trail cams more typically used to capture nocturnal animal movements) set up to capture photo time-lapse images of foliage (ranging from one per 30 mins to one per day) at the same times. Scientists use these continuous visual records to observe things like vegetation development, including flowering, fruiting, and leaf lifecycles. I this way they are able to generate quantitative measures of plant phenology (timings of cyclical or seasonal biological events, that might include flowering, migrations, egg laying or hibernation).
4.0cg Sy electronic Technical co ltd Trail Cam with 4G – one of the various cameras I have to hand

Aerial Monitoring

This would be a mixture of input from the QUT REF team who fly 35mm quality cameras – and my own Mavic 2 Zooms. Initial photos were taken on 24/4/24 showing some of the area put aside for the artwork.

A part of the artwork site, April 2024 (Image Keith Armstrong)

 

Experiment (2): Soil Biology @ the Artwork Site

As noted in this prior post, it has been particularly exciting to learn from A/Prof Caroline Hauxwell’s (Faculty of Science, School of Biology & Environmental Science.) extensive knowledge of the site and its soil biology.  (We had also engaged in fruitful discussions with here prior about the setup and the direction of the regeneration project).

Dr. Hauxwell has been using adjacent areas at SERF and part of the artwork/revegetation site for her research experiments into beneficial soil fungi – which have an end outcome to reduce pasture dieback that is caused by mealy bugs. (The bug in question is the paspalum mealybug, Heliococcus summervillei – and her work is of particular relevance to the pasture industry given that these invasive bugs devour Buffalo grass which is a key, commercial pasture grass, (and interestingly a notable environmental weed in conservation contexts). To do this work Caroline and her research team have become experts in isolating fungi from soils of forests and pastures.

Collecting soil samples along transects at SERF – across the artwork site (Image Keith Armstrong)

Immediately before, and following the burn of the SERF wet gulley/artwork site A/Prof Hauxwell had initiated a periodic soil sampling regime to learn how the fungal composition of the site might change according to the burn – something which also seemed very relevant to us given we needed proxy ways to determine the improvement of soil and plant health as the artwork process evolves.

So on 11/3/24 Dr. Eleanor Velasquez and I joined the soil sampling process at SERF – to understand and observe more about the scientific methods underway.

Soil samples from the artwork zone, collected and kept cool (Image Keith Armstrong)
Soil samples from the artwork zone (Image Keith Armstrong)
Artwork/site survey team, March 2024 (Image Keith Armstrong)
Site sampling notation (Image Keith Armstrong)

As per the prior study, samples would be taken in transects across the whole site (5 points per transect spanning the strip that we burned last year). Her students and postgraduate team had been analysing those soil samples for the presence of Purpureocillium (see prior soil biology investigation post).

Purpureocillium culture
Purpureocillium lilacinum culture. (https://www.adelaide.edu.au/mycology/fungal-descriptions-and-antifungal-susceptibility/hyphomycetes-conidial-moulds/purpureocillium)

Purpureocillium lilacinum is commonly isolated from soil, decaying vegetation, insects, nematodes and as a laboratory contaminant. It is also a causative agent of infection in human and other vertebrates (Luangsa-ard et al. 2011). 

Purpureocillium lilacinum (Subcultures from broth) (Image Keith Armstrong)

During our discussions we learnt that she would be continuing this work into 20924 – and she invited Eleanor and I to join her class which we have now done on a few occasions. The intentions of her study were to pursue three themes ..

  1. Soil Ecology: The isolation of facultative root endophytes, particularly P. lilacinum, to determine the effects of burning on abundance and diversity, and diversity within P. lilacinum.
  2. Media Development: Development of media for the production of P. lilacinum variants as an inoculum (that is – a liquid solution of the fungi that roots can grow through to make them resistant to Mealy bug) – which leads to the third area of interest
  3. The Good Bugs: The application of P. lilacinum variants as an inoculant against pasture mealybug.
Keith And Dr. Eleanor Velaqsquez in the soil biology lab, March 2024 (Image Keith Armstrong)

For me it has been a fascinating return to the analogue chemistry methods I remember only from Year 10 (!) – and has included both sampling soil to  the required protocol at SERF and then observing its analysis, culturing and the isolation of so called ‘morphotypes’ (in essence any of a group of different types of individuals of the same species in a population/individual fungi) for further growth on agar plate cultures. (An agar plate is a petri dish that contains a growth medium solidified with agar, and is used to culture microorganisms).

Student preparing soil solution containing bacteria onto an Agar plate (Image Keith Armstrong)
Soil fungi experiments with A/Prof Caroline Hauxwell, 2024 (Image Keith Armstrong)

Video of Agar Plate spreading

Inoculation medium/broth with dissolved fungi – ready for applying to grass plant roots (Image Keith Armstrong)
A mixture of different fungi to be described and isolated. (Image Keith Armstrong)
Notes on the composition (numbers of morphotypes and characteristics) of the fungi cultured over the past week – recorded by a student (Image Keith Armstrong)

The descriptions alone are evocative and the structure, form and ‘intelligence’ of this form suggest fruitful investigation ahead!

Preparing agar plates for the second stage of growth (Image Keith Armstrong)

The exciting idea that Caroline has raised – which further cements the fruitful connections emerging between the arts and sciences, is “to do a longitudinal study of the soil microbiome by adapting the sampling this year (across the burn site) to compare the dryer slope with the burned gully below.

Her (and our) interest would therefore be to see the changes in soil fungal diversity over time, particularly once trees are established.”  At this stage she is looking to do this highly technical, lab based work over several years – which will allow this project an extraordinary look into the health of the soil as the artwork develops. Exciting times ahead – so many thanks to A/Prof Hauxwell for your kindness, interest and engagement on this co-beneficial process 🙂

Purpureocillium lilacinum (Subcultures from broth) (Image Keith Armstrong)

 

 

Setup (5): Soil Biology Investigations (1)

Following discussions with the team – notably Gabrielle Lebbink and Eleanor Velasquez – we began to open up a new thread around the possibilities of soil inoculation – that is – finding ways to move material from eco active parts of the existing forest to the new sites.  This investigation is fuelled by/consistent with the need for the design of the artwork work to be of positive net benefit to the ecology of the emerging forest.

Gabrielle supplied some great information about ‘Re-wilding microbial/soil based communities’:

Contos P, Wood JL, Murphy NP, Gibb H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol Evol. 2021;11:7187–7200. https://doi.org/10.1002/ece3.7597. Downloaded y on [02/02/2024].

This article offered us some pointers of how we may be able to enhance soil biodiversity (potentially a part of an art/science process of trslocation of materials from the current forest to teh regeneration zone).  I noted of that paper  ..

Re-wilding of Microbe Communities (Notes, KMA 7/2/24)

Notes from: Contos P, Wood JL, Murphy NP, Gibb H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol Evol. 2021;11:7187–7200. https://doi.org/10.1002/ece3.7597. Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ece3.7597 by National Health and Medical Research Council, Wiley Online Library on [02/02/2024].

CONTEXT:
Invertebrates/microbes are key drivers of landscape scale ecosystem functions such as nutrient recycling and carbon sequestration, but many of these may still be functionally absent decades after a restoration process. The aim of any restoration project should actually be to reinstate ecosystem function and reestablishment of self-organising communities; and yet restoration ecologists rarely consider invertebrates and microbes which these make up the vast bulk of biodiversity and may drive key ecosystem recovery processes. Currently there is limited use of this approach in re-wilding projects – and often poor understanding of its importance.

Stepwise restoration  – i.e. a species at a time – is becoming less realistic in a dynamic and rapidly changing world. Typical approaches to restoration involve plant only and plant and animal only approaches – which operate under what the authors call the ‘field of dreams paradigm’ –  i.e. that if you build the habitat they will come! Such attempts often therefore ignore the ‘unseen majority’.

Normally microbial species translocations are done for the benefit of other species (i.e. to encourage back butterflies or for the benefit of a particular plant health)) rather than for themselves per se (e.g. introduced AMF fungi) – without considering whole communities.  Furthermore, in most cases microbes are rarely monitored afterwards anyway. Hence some environments may remain functionally unrecovered 10 or 20 years later. NB The process of microbial re-wilding is more common in soil inoculation studies (soil transplants).

Diagram from paper showing how we might move material across the ‘Inhospitable Matrix’ that bounds the artwork site: “Leaf litter samples taken from remnant patches and moved into revegetation patches will carry a multitude of invertebrate and microbe species and individuals. Inset: detritivorous mites and springtails taken from a leaf litter sample”.

Whole of community microbial (and invertebrate?) rewilding is often practical due to ease of manipulation – e.g. in forest litter invertebrates and microbes (e.g. detritovores) are critical components – (see p7193). Whole of community rewilding typically involves transporting small subsets of whole habitats – normally from a nearby remnant site to a revegetation plot that maybe separated by an ‘inhospitable matrix’ – e.g. a pasture – and may include elements such as soil, dead wood and pond mud.

“Collecting soil from the whole rhizosphere region of large established trees is impractical. Collecting rhizosphere communities by sampling 1 m out from the base of trees using a soil corer is a viable methodologic approach and is a more targeted way of rewilding microbial communities than current soil inoculation studies. Previous research has demonstrated that rhizosphere signatures can be detected using this approach for microbe communities from rainforest plant species despite the complex overlapping root networks (Wood et al., 2020)”

Its critical to avoid failures which will result in overall net loss of biota in an already stressed environment). The authors therefore suggest considering:

  • suitability of renewed habitat to accommodate the microbes: The revegetation site should be ameliorated and receptive (physical and chemical limitations of soil) – and the source site very carefully scanned for invasives and pathogens.
  • dispersal limitations of some invertebrates and microbes
  • Distance of new site from existing vegetation ideally should not be far
  • May work better in cool wet conditions when microbes and invertebrates are active and closer to surface of litter level (n.b. authors outside Australia)

Broadly speaking a project should

  • Set restoration goals
  • Evaluate the restoration trajectory
  • Choose what to re-wild
  • Conduct post re-wilding monitoring
  • Evaluate success/failures.
“Litter communities contain a breadth of species, including trilobite cockroaches, Laxta granicollis (center), and armadillid isopods (top right). These taxa are often overlooked during rewilding projects, despite their immense contribution to biodiversity and their influence on ecosystem functions such as decomposition. Photo credit: L Menz”

See also this great podcast:  https://www.futureecologies.net/listen/life-in-the-soil

These interesting learnings   dovetailed with the research one of the other science academics  (A/Prof Caroline Hauxwell) who is investigating diversity of fungal communities in soil, including Purpureocillium, which is a interesting fungus associated with pasture health and resilience to pests and diseases. She is interested in the impacts of burning on beneficial fungal symbionts (and thus the artwork site is an ideal choice) – something that ties in with her work on management of the pasture mealybug Heliococcus summervillei, which causes ‘pasture dieback’ (research that is co-funded with Meat and Livestock Australia). A/Prof Hauxwell is one of Australia’s foremost experts in this area and her research is extensive and widely recognised.

Dr. Hauxwell had already independently set up an experiment to monitor the artwork areas pre and post burn – so we were all ears to her process! Generously she invited Eleanor and I to join her class and get involved in some of her soil science – we jumped at this opportunity as an interesting creative opening.

 

To get more of a handle on this work – here are some excerpts from an email that A/Prof Caroline Hauxwell subsequently wrote – as part of a group email  in Feb 2024.

We welcome, Keith Armstrong, who initiated the burn at SERF and who is very interested in this work. Welcome, Keith.

“For most of you the work really starts in week 3 with the field trip to collect soil samples at SERF.

The project work this year is a Deep Dive on Soil Endophytes. We’ll be focusing particularly on Purpureocillium lilacinum. The project builds on sampling that we did before and shortly after a burn site at SERF for capstone last year.

The student data identified changes in Purpureocillium abundance and distribution in the burned area.

Fungal culture (Image c/o Sean Martin, created with particiapnts at the 2021 Woodford Bio Lab)

We also know from our research that P. lilacinum isolates have significant morphological diversity, but ITS sequencing has shown only 1 sequence/variant. We hope to look a bit more closely at P. lilacinum diversity in this project. All groups will also have access to 3 PCR primers for Sanger sequencing: one to characterise fungi to genus (ITS) and 2 others to take a deep dive on the identity of P. lilacinum morphotypes. For reference see Naimul’s work on Metarhizium. (https://eprints.qut.edu.au/view/person/Islam,_Shah.html) and https://doi.org/10.1016/j.funeco.2022.101179.

Soil Ecologists: The isolation of facultative root endophytes, particularly P. lilacinum, the effects of burning on abundance and diversity, and diversity within P. lilacinum.

Media Types: Development of media for the production of P. lilacinum variants as an inoculum

Fungal culture (Image c/o Sean Martin, created with participants at the 2021 Woodford Bio Lab)

All students (plus artists and the science team) will take part in soil sampling .. at SERF. This will take soil samples at 5 points along a transect across a strip that was burned last year See picture attached). 2 sample points will be outside the burn, and 3 inside it. All  will plate out their soil samples onto selective media.

For further background of this process see a report of the 2021 lab run by A/Prof Caroline Hauxwell at Woodford

 

Setup (4): Team Planning for Re-planting

Pre 2000’s the accepted narrative for establishing reforestation projects was preparation >plant>photo opp> move on. 3 year post reforestation maintenance programs is now the narrative in most projects depending on location.(Marcus Yates, 2024)

The following are notes I’ve made to track the plan for the regeneration process:

Suggested Planting date in active site approx. Thurs April 25th 

Preparation

Slash the area 6 weeks prior to date of planting  21 March 2024

  • Position site pegs across gully from east -west
  • Spray 1m diameter circles around planning site with appropriate herbicide and emerging woody environmental weeds (Biactive – surfactant does not harm aquatic organisms) with the addition of Fulvic acid which increases biodegradability of the glyphosate molecule, increases soil carbon and reduces herbicide/water ration by 1/3) + a squirt of dishwashing liquid (breaks the surface tension of H2O thus increasing contact with the cuticle of leaves
  • Spray again 1 week prior to planting. April 18th 2024
Aerial burn site of regeneration area, SERF.
SERF Aerial burn Site (Image courtesy QUT REF Team)

Planting

  • Purchase selected spp from local nurseries. Ensures hardier stock grown from parent trees from the local provenance
  • Sun “harden’ stock in full sun for 2 weeks prior to planting April 9th 2024
  • Mechanical dig planting hole a day or two before planting date. April 23rd 
  • Must have adequate sub soil moisture on the day of the planting.Otherwise reschedule
  • Saturate plants on the morning of the planting
  • Group demonstration of the techniques used to eliminate/minimise transplant stress
  • Place inoculated soil in planting hole
  • Secure weed mat and tree guard. Tree guards create a micro climate of increased humidity and protects against the wind, reducing the plant losing moisture from transpiration (reduces transplant stress). Protects from herbicide overspray and animals grazing (wallabies and hares)
Overlapping eucalypt leaves
Overlapping Eucalypt Leaves, SERF, 2024 (Image Keith Armstrong)

Maintenance

  • Replant plant losses when suitable.
  • 6 -10 week Spray routines around plants and neighbouring woody weeds (dependent on local weather conditions and seasons)
  • Slash when required
  • Brush cut inter rows (when required)
  • Form prune to retain one leader when required (approx. 1st and 3rd month post planting)
  • Remove tree guards when tree is 3 x height of guard
  • Continued monitoring of natural regen
  • Interplant where required

Relevant read: 

https://ris.cdu.edu.au/ws/portalfiles/portal/72716695/Preece_et_al_2023_JEnvMgt.pdf

Tree planting plan for active regeneration area (Courtesy Marcus Yates)
Tree planting plan (Courtesy Marcus Yates)

Planned Planting: Species Layout

EM – Emergent species

C – Canopy species

Sp.- Space for sub canopy species and shrubs (or natural regen) as part of stage 2 planting. Est > April 2026 or when canopy semi closes

Setup (3): The Site/Scientific Intentions

The FAI project initiates a collaboration between ecological scientists, artists and land managers to conduct a forest regeneration processes, and over time use that forest’s growth to direct an experimental media arts practice. The  central aim of the science is to effectively restore a previously cleared forest (using both active and passive techniques): and as that process develops create speculative artworks that can be seen to illuminate the ‘agency’ and ‘non-human intelligence’ of that re-growth process. These hybrid artworks should, in some way, have capacity to either actively or passively support those re-growth processes and present new ways to communicate, interpret & ‘narrativise’ ecological change at that site.

SERF’s Regional Ecosystem Map: (Image Dr.. David Tucker)

Two adjacent sites have been chosen at SERF for this project that are a total of 14199.305 square metres (1.42 hectares), and were likely logged decades ago.

Aerial image of the artwork sites at SERF – active and passive (Image Dr. David Tucker)

They comprise a grassy slope currently rich in native grass species and a seasonally wet gulley current overrun by weedy grasses dotted by occasional trees. Both sites most likely previously had a grassy understory similar to the adjacent existing forest. The methodology has involved assessing information about what was there beforehand from the pre-clearing data as well as examining remaining adjacent vegetation. The plan is to set in place a process to ultimately replicate prior densities for tree, shrub and ground layers. The objective is to use passive regeneration methods across a grassed slope area, and some assisted regeneration (using seedlings and weed control) in the wetter gulley area. Some of those original tree cover types may no longer available locally.

The ‘active’ artwork site at SERF (Image Dr. David Tucker)

The science component will be managed by QUT SERF scientists (David Tucker and Gabrielle Lebbink) supported and informed by TERN’s Eleanor Velasquez, with the growing and maintenance processes managed by SERF’s Marcus Yates. The arts component of the project will be directed by Keith Armstrong.

The ‘passive’ artwork site at SERF (Image Dr. David Tucker)

SITE DETAILS

Site 1: Passive regeneration area – grassed sloping bank, last slashed in July 23.
7163.647 sq. m passively managed plot – likely similar to the dominant veg at SERF RE of concern 12.12.12: https://apps.des.qld.gov.au/regional-ecosystems/details/?re=12.12.12)

Eucalyptus tereticornis, Corymbia intermedia, E. crebra +/- Lophostemon suaveolens woodland on Mesozoic to Proterozoic igneous rocks).

We will encourage the transition process on this plot via selective slashing, mulching, weeding, and the introduction of fallen habitat trees & occasional selective planting under Marcus Yates management and with advice and input from Dr David Tucker, Marcus Yates, Dr. Gabrielle Lebbink and Dr. Eleanor Velasquez.

Site 2: Active regeneration area – grassed seasonal wet gulley area – was burnt in August 2023. 7035.658 sq. m actively managed plot – likely an ecotone associated with wet gullies RE12.3.6, which reflects the forest type further along the drainage line:(https://apps.des.qld.gov.au/regional-ecosystems/details/?re=12.3.6)

Melaleuca quinquenervia +/- Eucalyptus tereticornis, Lophostemon suaveolens, Corymbia intermedia open forest on coastal alluvial plains

weedy grass in foreground and mountain behind
Predominant weedy grass species in SERF active regeneration area gulley, Summer 2024 (Image Keith Armstrong)

Recommendations (Dr. Peter Young/Dr. David Tucker) include include staged plantings of a relatively simple mix of Emergent species (Eucalyptus tereticornis, (forest red gum, blue gum / red irongum), Corymbia intermedia (pink bloodwood), Corymbia tesselaris (Moreton Bay ash)) and Canopy species (Melaleuca quinquenervia (broad-leaved paperbark, paper bark tea tree),  Melaleuca salicina (willow bottlebrush), Lophostemon sauveolens (Swamp Box, Swamp Turpentine) and Guoia semiglauca (guioa or wild quince) with the expectation that many of the subcanopy and shrub species will passively regenerate through the dispersal of seeds from birds, water, wind  etc. following canopy closure and site capture from initial stage 1 planting. There is the potential for later infill planting if there are significant gaps

Burn Regeneration Area, SERF, Samford, Qld, 2023
Active Site – Burn day, SERF, Samford, Image Keith Armstrong
Burn Regeneration Area, SERF, Samford, Qld, 2023
Active Site – Burn day, SERF, Samford, Image Keith Armstrong

 

Setup (2): Initial Meeting with the Terrestrial Earth Research Network/TERN

Preamble

On 27th Feb, I accompanied one of my science collaborators Dr. Eleanor Velasquez – who is also our partner TERN’s (Terrestrial Ecology Research Network) Education Manager, to meet with her colleagues  Arun Singh Ramesh, Lachlan Charles and Javier Sanchez Gonzalez <Zooming from Madrid> at TERN HQ @University of Qld Long Pocket, Brisbane.

Meeting the TERN team on and offline in Brisbane, Feb 2024 (Image Keith Armstrong)

The meeting was primarily to discuss the data access and visualisation facilities that TERN offer.

We discussed all of the following data types that may be available to us going forward : –

Overview of TERN processes (Image courtesy of TERN)

TERN Landscapes / Land Observatory engages in Environmental reporting using remote sensing that is consistent across all sites. “TERN’s Landscape Monitoring platform conducts environmental monitoring and landscape observation using remote sensing techniques to characterise and monitor Australian ecosystems over time at a landscape and continental scale. The platform also undertakes specific modelling and synthesis activities (for clients) to extrapolate and interpolate from observational data to produce modelled data products”.

TERN’s data discovery portal page

Data Types:

Vegetation Structure and Change – Land cover, seasonal fractional cover (bare, green and non-green cover), uses quarterly time scales (3-month)

Soil – soil physicochemical attributes, lithology, soil organic carbon, pH, water availability, etc.

TERN Landscape visualiser – in this case ‘pyrogeography’ readings (Image courtesy of TERN)

This area of their folio engages: Land cover dynamics and phenology (i.e. the study of cyclic and seasonal natural phenomena, especially in relation to climate and plant and animal life), Vegetation composition and diversity, Fire dynamics and impacts, Vegetation structural properties and Biomass, Field survey datasets, Airborne datasets, Corrected surface reflectance products and other environmental and landscape research data such as solar radiation, rainfall, and water vapour pressure.

TERN Ecosystem Surveillance
This element of TERN’s capacity involves a range of measurement and recording types – such as the use of LIDAR to scan environments and the collection of CO2 data from Eddy Covariance flux towers. This area tracks the direction and magnitude of change in Australia’s environments over time, through sampling and surveying flora, soil and some invertebrates.

•Plot-based survey – uses 1ha plot

•Standardized protocol to monitor vegetation and soil attributes at
plot-level (e.g. AusPlots)
•Surveillance monitoring for the Ecological Monitoring System
Australia (EMSA) – DCCEEW

ecoplots.tern.org.au 

TERN Ecoplots Lead Page (Image courtesy of TERN)

TERN Ecosystem Processes
TERN’s Ecosystem Processes platform monitors the environment at a high level of detail at a small number of representative sites/key Australian biomes (called Super Sites) – of which TERN is one – categorised as a peri-urban site. 

Micrometerorological and land-surface and atmospheric processes – Sensor and flux data

•Vegetation CO2 and H2O fluxes

•Phenocams – phenology

Ozflux-tern/ ecoimages.tern.org.au

ecoimages.tern.org.au

Random phenocam image of the artwork site from 2015 – (longer grass is the area that was burnt in 2023) (Image courtesy TERN)

Clearly these data set types offer a host of possibilities. The data set is predominantly numerical data although images also exist – and therefore suggests the need for computational analysis going forward.

At this stage the LIDAR data held, the historic data from SERF (e.g. the super site readings and the phenocams) and the atmospheric data may be of future interest to this project. I would expect further discussion in the future as more specific pointers to the need for such data may emerge. Thank you for the team at TERN and Dr. Eleanor Velasquez for making the visit so successful 🙂