Myrtaceae(/mərˈteɪsiˌaɪ, -siːˌiː/) Science/Restoration/WWW

Myrtaceae(/mərˈteɪsiˌaɪ, -siːˌiː/) Science/The Site

“As they slowly come together as a renewed community, they will be an extraordinary and invaluable addition to our Australian heritage.”
Dr. David Tucker (10/8/24, EF grant reference letter)

SERF Myrtacea, Sept 2024 )(Image Keith Armstrong)

“Clearly Eucalypt species such as these are in effect ‘hiding in plain sight’ in the Australian public’s imagination, and I have long asked how we might encourage people to begin to better see what we risk losing. Clearly, we need other approaches beyond science to overcome our ‘plant blindness’, and this is why I support the Forest Art Intelligence project’s aim of bringing attention to the described natural intelligence of this Eucalypt woodland as it recovers over time”.
Dr. David Tucker (10/8/24, EF grant reference letter)

The purpose of this post is to attempt come to come to terms, maybe just a little more,  with some of the artwork sites’ eucalypt  species given the project is focused upon their flourishing. This will  both enhance the shared language with the science team, and further my capacity to differentiate the ‘wood from the trees’ whilst on site 😉 This, based upon a realisation how little I comprehend in a systematic/science0-eyed sense when in the bush, despite the all consuming experience it always engenders. Is it therefore possible to absorb more?

The predominant trees at the two artwork sites are in the order Myrtaceae {the Myrtle family} – a large, cosmopolitan family of plants with over 5000 species worldwide, well represented in Australia contain ca. 12 families with over 70 genera and over 1500 species – can be found in a wide range of habitats and climatic zones – coastal heaths, temperate forests and woodlands, tropical rainforests – even arid and alpine zones.. (https://anpsa.org.au/genera/myrtle-family-myrtaceae/).

All myrtle species are woody, contain essential oils, and have flower parts in multiples of four or five. The leaves are evergreen, alternate to mostly opposite, simple, and usually entire (i.e., without a toothed margin). The flowers have a base number of five petals, though in several genera, the petals are minute or absent. The stamens are usually very conspicuous, brightly coloured, and numerous.

GENERA members of Myrtaceae (i.e. more than one GENUS) include  Eucalypts: Eucalyptus, Corymbia, Angophora  {together collectively known as the eucalypts}.

Many species fall within this genus, including

The eucalypts –  within the plant family Myrtaceae – number among their relatives such well known Australian genera as Callistemon (bottlebrushes), Melaleuca (paperbarks), Leptospermum (tea trees) and Syncarpia (turpentine)

Grassland sunset (Image Keith Armstrong)

Some names in common usage are:

  • Apple – A name used by early European settlers due to a similarity in appearance of some plants to apple trees (eg. Angophora bakeri, Narrow-leaved apple)
  • Ash – Timber is similar to the European ash trees (eg. Eucalyptus regnans, Mountain ash)
  • Blackbutt – The lower part of the trunk has persistent bark which is usually black due to past fires (eg. Eucalyptus pilularis, Blackbutt)
  • Bloodwood – Timber often has pockets of a dark red gum known as kino (eg. Corymbia eximia, Yellow bloodwood)
  • Box – Bark is retained on the tree and is short fibred; plates of bark may shear off with age (eg. Eucalyptus melliodora (Yellow box)
  • Ironbark – Bark is retained on the tree and is hard and deeply furrowed (eg. Eucalyptus crebra, Narrow-leaved ironbark)
  • Mallee – Multi-stemmed trees, usually fairly small in height (eg. Eucalyptus albida, White-leaved mallee)
  • Peppermint – The oil in the leaves has a peppermint-like aroma (eg. Eucalyptus dives, Broad-leaved peppermint)
  • Ribbon Gum – Bark is deciduous and is shed in long strips which often hang from the branches (eg. Eucalyptus viminalis, Ribbon gum)
  • Scribbly Gum – Bark is deciduous and the smooth trunk is marked with “scribbles” caused by an insect larva (eg. Eucalyptus sclerophylla, Scribbly gum)
  • Stringybark – Bark is retained in long fibres which can be pulled off in “strings” (eg. Eucalyptus eugenioides, Thin-leaved stringybark)
Eucalypt Bark Types
We will encourage the transition process on this plot via selective slashing, mulching, weeding, and the introduction of fallen habitat trees & occasional selective planting under Marcus Yates management and with advice and input from Dr David Tucker, Marcus Yates, Dr. Gabrielle Lebbink and Dr. Eleanor Velasquez.

SITE 1: 7164 sq. m passively managed plot – grassed sloping bank, last slashed July 23. Likely similar to the other dominant veg at SERF  – i.e. Myrtaceae woodland on Mesozoic to Proterozoic igneous rocks – specifically Eucalyptus tereticornis, Corymbia intermedia, E. crebra +/- Lophostemon suaveolens woodland on Mesozoic to Proterozoic igneous rocks
. This vegetation is ‘of concern’ Regional Ecosystem classification RE 12.12.12: @ 2021 – only 21.5% of this type remains as it is extensively cleared for pasture.

Re-growth on Site 1, 2024, (Image Keith Armstrong)

Emergent species:
Eucalyptus crebra: Narrow-leaved red ironbark
(Eucalyptus tereticornis, (blue gum /forest red gum/red irongum),
Corymbia intermedia (pink bloodwood),
Corymbia tesselaris (Moreton Bay ash))

Canopy species:
Lophostemon sauveolens (Swamp Box, Swamp Turpentine)

 Pink Bloodwood :Corymbia intermedia http://www.npqtownsville.org.au/native-plants-of-the-townsville-region/corymbia-intermedia/ https://apps.lucidcentral.org/rainforest/text/
entities/corymbia_intermedia.htm

Reference Trees at Barracks (in process learning!)

Reference tree positions @ Barracks (Image Keith Armstrong)

Other canopy/relevant local species we had initially planned to plant
Melaleuca quinquenervia (broad-leaved paperbark, paper bark tea tree),
Melaleuca salicina (willow bottlebrush),
Guoia semiglauca (guioa or wild quince)
with the expectation that many subcanopy and shrub species will passively regenerate through the dispersal of seeds from birds, water, wind etc. following canopy closure and site capture

SITE2: 7035.658 sq. m ‘wetland’, holding area – grassed seasonal wet gulley area – was burnt in August 2023  – likely an ecotone associated with wet gullies RE12.3.6, which reflects the forest type further along the drainage line – Melaleuca quinquenervia +/- Eucalyptus tereticornis, Lophostemon suaveolens, Corymbia intermedia open forest on coastal alluvial plains
weedy grass in foreground and mountain behind
Predominant weedy grass species in SERF active regeneration area gulley, Summer 2024 (Image Keith Armstrong)

EUCLID /Identification Processes:

from https://apps.lucidcentral.org/euclid/text/intro/learn.htm#Identifying

To the uninitiated, most eucalypt species tend to look similar, and while taxa in some groups are indeed difficult to distinguish, in general there are good features and clear characteristics to use in identification. Eucalypt leaf morphology provides a range of diagnostic features (as well as injects a level of confusion in the change from seedling to juvenile to sapling to adult leaves that takes place in the majority of species). Eucalypt fruits (gumnuts) also show great diversity in form and size. Identification in EUCLID for eastern Australian species usually fall back on the less conspicuous and accessible but highly diagnostic characters, often ones that may be less relevant in other plant groups.

In working with eucalypts in the field it is important to recognise whether the trees are cultivated, or occur naturally. If cultivated, they could be from anywhere in Australia. To aid identification take into account other aspects of the specimen, viz. the height of the plant, the number of stems or trunks, the colour of the crown, the overall appearance of the crown to determine if it is composed of juvenile or adult leaves, general size of the leaves (very small, e.g. E. parvula or E. kruseana, or very large, e.g. E. globulus) and the type of bark, basically, whether rough or smooth, and extent of coverage by the rough bark of the smaller branchlets. There is often considerable variation in some characters between trees of the same species in one population, especially in size of parts, such as length and width of leaves, length of petioles, bud sizes, lengths of peduncles and pedicels, and fruit dimensions and position of the disc relative to the rim of the fruit.

The ‘internal’ features of the eucalypt plant, such as the number of opercula in the bud, arrangement of stamens, number of ovule rows and seed shape, are usually more reliable for identification than the ‘external’ features. They are relatively protected from the elements and from various forms of predation. They are the parts that require handling and close inspection or even dissection, as opposed to macro observation.

Calistemon in Flower, SERF, 26/9/24 (Image Keith Armstrong)

Specimens for study may be obtained.. For most trees, a weighted length of rope can be thrown over a low branch which can then be broken off with a sharp tug and pulled to the ground for close inspection of the parts. Alternatively, for trees of moderate height, pole pruners can be used less destructively than the weighted rope. For tall trees it is a curious fact that the flowers and fruits are small and scarcely visible to the unaided eye, e.g. E. regnans. Then the canopy needs to be inspected with binoculars and a useful branch selected. If it is above rope-throwing height, the branch may be reached with the use of a shanghai by shooting a lead weight attached to a fine, light line over the branch and then attaching a thicker, stronger rope to one end of this line and then pulling this line up over the branch. Often the smallest trees or mallees have the largest buds and fruits, e.g. E. pyriformis. These plants are the easiest to sample, examine and assess.

The whole process of identification begins in the field with broad external assessment and ends with microscopic examination. In summary it might be said that the number of opercula on the developing flower bud is of absolute reliability, staminal inflexion, ovule row numbers and seed shape are of high reliability, bud numbers, flower colour and bark type of medium reliability, leaf colour of low reliability, bark colour of very low reliability. External features are very susceptible to seasonal and intra-population variability.

This is the level of detail to expect to shift through scientifically:!

Corymbia intermedia

(Pink Bloodwood) – Myrtaceae: Tree to 35 m tall. Forming a lignotuber. (ie embedded vegetative buds that allow regeneration following crown destruction – forming new stems/trunks (which can become massive) after fire possessing

Introduction to FOREST RESTORATION APPROACHES

Ecologist Susan Simmard (famous for defining the wood wide web) reminds how plants in effect suck up sunlight – photosynthesising via leaves (and sometime stems) – shuttling energy down into roots – and how they share carbon with other trees (e.g. interdependence). Tree roots and soil are the foundation of the forest – . The  mycelium from the mychorizza – infects and colonises roots  – and trade carbon for nutrients, forming  nodes and links/fungal highways – mother or hub trees nature the young – sending carbon to their seedlings in the understory. Forests Simmard reminds us aren’t just collections of trees but complex systems with hubs (hub trees) and networks .. that overlap and allow them to communicate and provide avenues for feedback and adaptation – that make the forest resilient. In the case of FAI – that network is in its infancy/simplified and needs nurture.

Eucalypts form symbioses with mycorrhizal fungi both in their native habitat and in plantations. For instance, one study of sporocarps under Eucalyptus globulus in both plantation and forest settings reported 44 putative ectomycorrhizal (ECM) species; 30 of which occurred in plantations (Lu et al. 1999)

Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

See also : the Social Life of Trees – Susan Simmard

Likewise re: sentience/sapience (Sentience: The ability to feel emotions, have a subjective experience, develop a personality, and form a morality.Sapience: The ability to act rationally, to learn, to understand) – Peter Wohlleben (The Secret Life of Trees) makes compelling cases for communication and cooperation among plant species.

Please note that this info on restoration below may not all apply to a subtropical climate.. (Thanks Dr. Gabrielle Lebbinck for this heads up)
 
Approaches to Restoration: Reestablishing native grassy swards in degraded grassy white box woodlands

( Prober et al. 2005). + (Ref 2)A critical stage in the restoration and persistence of native plant composition and diversity is seedling germination and establishment. The seedling stage is often exceptionally vulnerable and determines the distribution of many species. (Harper 1977). Consequently, conditions for seedling recruitment will influence the composition and diversity of restored plant communities (Grubb 1977; Hobbs and Huenneke 1992; Morgan 2001; Clarke and Davison 2004). Restoration of ecological conditions that promote germination and establishment of native seedlings is thus an important component of successful restoration of species composition and diversity.

SERF Forbs (Image Keith Armstrong)

FORBS
Temperate grassy eucalypt woodlands in the agricultural zones of south-eastern Australia naturally support a high diversity of herbaceous perennial forbs among the dominant grass tussocks (McIntyre et al. 1993; Prober and Thiele 1995; Clarke 2000). These ecosystems have become highly fragmented and degraded through nearly 200 years of clearing and agricultural use, and most woodland remnants now have a high abundance of exotic plants and reduced native plant diversity (Lunt 1991; Tremont and McIntyre 1994; Prober and Thiele 1995). Ecological restoration of understorey plant diversity is thus urgently needed to conserve and enhance what remains of these grassy ecosystems (Cole and Lunt 2005; Prober and Thiele 2005; Gibson-Roy et al. 2007), and to ensure the long- term survival of many woodland forb species.

However, restoration of native plant diversity in temperate grassy ecosystems is not straight forward(McDougall and Morgan 2005). Understorey degradation in these ecosystems has been associated with altered ecological processes, particularly enhanced soil nutrient regimes (McIntyre and Lavorel 1994; Prober et al. 2002a; Dorrough et al. 2006). These can favour the long-term persistence of exotics (Prober et al. 2002b, 2005) and modify conditions for establishment and survival of many native species. In particular, competition from exotics may reduce resources for seedling establishment by native species (Grime 1979; Wilson and Tilman 1993; Lenz and Facelli 2005) and suppress slower-growing native species (Alvarez and Cushman 2002; King and Buckney 2002; Prober et al. 2002b).

Oversupply of red natal weedy grass, SERF plot, Sept 2024 (Image Keith Armstrong)

Restoration techniques that have attempted to address these altered ecological processes include spring burning, seasonal grazing and carbon addition. Spring burning removes litter, above-ground biomass and the seed bank of exotic annual grasses (Kost and De Steven 2000; Clarke and Davison 2001; Prober et al. 2004, 2005), reducing the abundance of annual exotic grasses in the following seasons, but variously enhancing broadleaf exotics (Prober et al. 2005). Heavy grazing in spring has similarly been found to reduce the seed set and abundance of exotic annual grasses (Menke 1992; Garden et al. 2000). Carbon addition promotes carbon-limited soil microorganisms, which subsequently compete with plants for available soil nitrogen, dramatically inhibiting the growth of nitrophilic annual exotics and in some cases allowing slower-growing native species a window-of-opportunity to establish (Averett et al. 2004; Corbin and D’Antonio 2004; Prober et al. 2005). Spring burning and carbon addition have proven successful for establishing native grasses in Australia (Prober et al. 2005) and grasses and forbs in tall-grass prairies in the USA (Baer et al. 2003; Blumenthal et al. 2003; Averett et al. 2004), and have led to successful restoration of ecological processes associated with nitrogen cycling in temperate grassy eucalypt woodlands (Prober et al. 2005).

An important next step in restoring woodland understoreys is to enhance native plant diversity by re-establishing sustainable populations of native perennial forbs. However, there is little data on natural recruitment and population dynamics of native forbs to guide this process (Morgan 2001; Clarke and Davison 2004), and responses of native forbs to the above restoration techniques (especially carbon addition) are unknown.

———————- TAXONOMY ADDENDUM —————–

https://en.wikipedia.org/wiki/Taxonomy_(bi

LIFE: Eukaryota – Organisms whose cells have a membrane-bound nucleus.

DOMAIN/CLADE: Diaphoretickes – The majority of the earth’s biomass that carries out photosynthesis belongs to Diaphoretickes – 400,000 members.

KINGDOM/PLANTAE – predominantly photosysnthesisers who obtain their energy from sunlight, using chloroplasts derived from endosymbiosis with cyanobacteria to produce sugars from carbon dioxide and water, using the green pigment chlorophyll. (Exceptions are parasitic plants that have lost the genes for chlorophyll and photosynthesis, and obtain their energy from other plants or fungi. Most plants are muliticellular, except for some green algae. NB Plantae excludes fungi and some algae.)

PHYLUM/Traceophytes -Vascular plants (from Latin vasculum ‘duct’), also called tracheophytes (UK: /ˈtrækəˌfts/,[5]US: /ˈtrkəˌfts/)[6] or collectively tracheophyta. are plants that have lignified tissues (the xylem) for conducting water and minerals throughout the plant. They also have a specialized non-lignified tissue (the phloem) to conduct products of photosynthesis. The group includes most land plants (c. 300,000 accepted known species)[10] other than mosses

CLASS/Angiosperms – Flowering plants are plants that bear flowers and fruits, They include all forbs (flowering plants without a woody stem), grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants.

ORDER/Eudicots –  flowering plants (angiosperms) which are mainly characterized by having two seed leaves (cotyledons) upon germination.[1]The term derives from dicotyledon (etymologically, eu = true; di = two; cotyledon = seed leaf).

FAMILY/Rosids – Today’s broadleaved forests are dominated by rosid species, which in turn help with diversification in many other living lineages. Additionally, rosid herbs and shrubs are a significant part of arctic/alpine and temperate floras. The clade also includes some aquatic, desert and parasitic plants

Malvids

The malvids consist of eight orders of flowering plants: Brassicales, Crossosomatales, Geraniales, Huerteales, Malvales, Myrtales, Picramniales and Sapindales.

The Myrtaceae genera – https://www.researchgate.net/figure/Plastome-phylogeny-of-Myrtales-based-on-an-ML-analysis-of-78-genes-from-the-plastome-of_fig2_342821472

 

Leave a Reply